1,648 research outputs found

    A New Design Approach and Framework for Elderly Care Robots

    Get PDF
    A relatively new area within information systems is the design of robotic healthcare. This narrative review considers the question, how does one ethically design an elderly care robot? To answer this question, robot ethicists consider the ethical impact of robots, how designers ought to design robots ethically, and how a robot design ought to be, so its behaviour is ethical. The latter consideration defines another field of study, machine ethics. Machine ethicists ask, how does one design a robot information system to behave ethically? Thus, robot ethics is concerned with the ethics of design practice, whereas machine ethics is concerned with the ethics of the product designed. The findings from this narrative review point the way forward to how one can answer both questions with a new design approach that is grounded in care and professional ethics, value sensitive design, and the integration of two machine ethics schools of thought

    Zeptomole Electrochemical Detection of Metallothioneins

    Get PDF
    Thiol-rich peptides and proteins possess a large number of biological activities and may serve as markers for numerous health problems including cancer. Metallothionein (MT), a small molecular mass protein rich in cysteine, may be considered as one of the promising tumour markers. The aim of this paper was to employ chronopotentiometric stripping analysis (CPSA) for highly sensitive detection of MT.In this study, we used adsorptive transfer stripping technique coupled with CPSA for detection of cysteine, glutathione oxidized and reduced, phytochelatin, bovine serum albumin, and metallothionein. Under the optimal conditions, we were able to estimate detection limits down to tens of fg per ml. Further, this method was applied to detect metallothioneins in blood serum obtained from patients with breast cancer and in neuroblastoma cells resistant and sensitive to cisplatin in order to show the possible role of metallothioneins in carcinogenesis. It was found that MT level in blood serum was almost twice higher as compared to the level determined in healthy individuals.This paper brings unique results on the application of ultra-sensitive electroanalytical method for metallothionein detection. The detection limit and other analytical parameters are the best among the parameters of other techniques. In spite of the fact that the paper is mainly focused on metallothionein, it is worth mentioning that successful detection of other biologically important molecules is possible by this method. Coupling of this method with simple isolation methods such as antibody-modified paramagnetic particles may be implemented to lab-on-chip instrument

    Diagnostic and Prognostic Significance of Complement in Patients with Alcohol-associated Hepatitis

    Get PDF
    BACKGROUND and AIMS: Given the lack of effective therapies and high mortality in acute alcohol-associated hepatitis (AH), it is important to develop rationally-designed biomarkers for effective disease management. Complement, a critical component of the innate immune system, contributes to uncontrolled inflammatory responses leading to liver injury, but is also involved in hepatic regeneration. Here we investigated if a panel of complement proteins and activation products would provide useful biomarkers for severity of AH and aid in predicting 90 days mortality. APPROACH and RESULTS: Plasma samples collected at time of diagnosis from 254 patients with moderate and severe AH recruited from four medical centers and 31 healthy individuals were used to quantify complement proteins by ELISA and Luminex arrays. Components of the classical and lectin pathways, including complement factors C2, C4b and C4d, as well as complement factor I (CFI) and C5, were reduced in AH patients compared to healthy individuals. In contrast, components of the alternative pathway, including complement factor Ba (CFBa) and factor D (CFD), were increased. Markers of complement activation were also differentially evident, with C5a increased and the soluble terminal complement complex (sC5b9) decreased in AH. Mannose binding lectin (MBL), C4b, CFI, C5 and sC5b9 were negatively correlated with model for end-stage liver disease (MELD) score, while CFBa and CFD were positively associated with disease severity. Lower CFI and sC5b9 were associated with increased 90-day mortality in AH. CONCLUSIONS: Taken together, these data indicate that AH is associated with a profound disruption of complement. Inclusion of complement, especially CFI and sC5b9, along with other laboratory indicators, could improve diagnostic and prognostic indications of disease severity and risk of mortality for AH patients

    Implementation of the EU CCS Directive in Europe: results and development in 2013

    Get PDF
    Directive 2009/31/EC of the European Parliament on the geological storage of carbon dioxide, entered into force on June 25th 2009. By the end 2013 the CCS Directive has been fully transposed into national law to the satisfaction of the EC in 20 out of 28 EU Member States, while six EU countries (Austria, Cyprus, Hungary, Ireland, Sweden and Slovenia) had to complete transposing measures. In July 2014 the European Commission closed infringement procedures against Cyprus, Hungary and Ireland, which have notified the EC that they have taken measures to incorporate the CCS Directive into national law. Among other three countries Sweden has updated its legislation and published a new law in their country in March 2014, permitting CO2 storage offshore. The evaluation of the national laws in Poland, which were accepted at national level in November 2013, and Croatia, which entered the EU on 7 July 2013 and simultaneously transposed the CCS directive, is still ongoing in 2014. The first storage permit under the Directive (for the ROAD Project in the offshore Netherlands) has been approved by the EC. While CO2 storage is permitted in a number of European countries, temporary restrictions were applied in Czech Republic, Denmark and Poland. CO2 storage is prohibited except for research and development in Estonia, Finland, Luxembourg, two regions in Belgium and Slovenia due to their geological conditions, but also forbidden in Austraia, Ireland and Latvia. The size of exploration areas for CO2 storage sites is limited in Bulgaria and Hungary. In Germany, only limited CO2 storage will be permitted until 2018 (up to 4 Mt CO2 annually)

    Anaphylatoxin Receptors C3aR and C5aR1 Are Important Factors That Influence the Impact of Ethanol on the Adipose Secretome

    Get PDF
    Background and aims: Chronic ethanol exposure results in inflammation in adipose tissue; this response is associated with activation of complement as well as the development of alcohol-related liver disease (ALD). Adipose communicates with other organs, including liver, via the release of soluble mediators, such as adipokines and cytokines, characterized as the “adipose secretome.” Here we investigated the role of the anaphaylatoxin receptors C3aR and C5aR1 in the development of adipose tissue inflammation and regulation of the adipose secretome in murine ALD (mALD).Methods: Wild-type C57BL/6 (WT), C3aR−/−, and C5aR1−/− mice were fed Lieber-DeCarli ethanol diet for 25 days (6% v/v, 32% kcal) or isocaloric control diets; indicators of inflammation and injury were assessed in gonadal adipose tissue. The adipose secretome was characterized in isolated adipocytes and stromal vascular cells.Results: Ethanol feeding increased the expression of adipokines, chemokines and leukocyte markers in gonadal adipose tissue from WT mice; C3aR−/− were partially protected while C5aR1−/− mice were completely protected. In contrast, induction of CYP2E1 and accumulation of TUNEL-positive cells in adipose in response to ethanol feeding was independent of genotype. Bone marrow chimeras, generated with WT and C5aR1−/− mice, revealed C5aR1 expression on non-myeloid cells, likely to be adipocytes, contributed to ethanol-induced adipose inflammation. Chronic ethanol feeding regulated both the quantity and distribution of adipokines secreted from adipocytes in a C5aR1-dependent mechanism. In WT mice, chronic ethanol feeding induced a predominant release of pro-inflammatory adipokines from adipocytes, while the adipose secretome from C5aR1−/− mice was characterized by an anti-inflammatory/protective profile. Further, the cargo of adipocyte-derived extracellular vesicles (EVs) was distinct from the soluble secretome; in WT EVs, ethanol increased the abundance of pro-inflammatory mediators while EV cargo from C5aR1−/− adipocytes contained a greater diversity and more robust expression of adipokines.Conclusions: C3aR and C5aR1 are potent regulators of ethanol-induced adipose inflammation in mALD. C5aR1 modulated the impact of chronic ethanol on the content of the adipose secretome, as well as influencing the cargo of an extensive array of adipokines from adipocyte-derived EVs. Taken together, our data demonstrate that C5aR1 contributes to ethanol-mediated changes in the adipose secretome, likely contributing to intra-organ injury in ALD

    Gut Microbial Trimethylamine Is Elevated in Alcohol-Associated Hepatitis and Contributes to Ethanol-Induced Liver Injury in Mice

    Get PDF
    There is mounting evidence that microbes residing in the human intestine contribute to diverse alcohol-associated liver diseases (ALD) including the most deadly form known as alcohol-associated hepatitis (AH). However, mechanisms by which gut microbes synergize with excessive alcohol intake to promote liver injury are poorly understood. Furthermore, whether drugs that selectively target gut microbial metabolism can improve ALD has never been tested. We used liquid chromatography tandem mass spectrometry to quantify the levels of microbe and host choline co-metabolites in healthy controls and AH patients, finding elevated levels of the microbial metabolite trimethylamine (TMA) in AH. In subsequent studies, we treated mice with non-lethal bacterial choline TMA lyase (CutC/D) inhibitors to blunt gut microbe-dependent production of TMA in the context of chronic ethanol administration. Indices of liver injury were quantified by complementary RNA sequencing, biochemical, and histological approaches. In addition, we examined the impact of ethanol consumption and TMA lyase inhibition on gut microbiome structure via 16S rRNA sequencing. We show the gut microbial choline metabolite TMA is elevated in AH patients and correlates with reduced hepatic expression of the TMA oxygenase flavin-containing monooxygenase 3 (FMO3). Provocatively, we find that small molecule inhibition of gut microbial CutC/D activity protects mice from ethanol-induced liver injury. CutC/D inhibitor-driven improvement in ethanol-induced liver injury is associated with distinct reorganization of the gut microbiome and host liver transcriptome. The microbial metabolite TMA is elevated in patients with AH, and inhibition of TMA production from gut microbes can protect mice from ethanol-induced liver injury

    Formation of reactive oxygen species by human and bacterial pyruvate and 2- oxoglutarate dehydrogenase multienzyme complexes reconstituted from recombinant components

    Get PDF
    Individual recombinant components of pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes (PDHc, OGDHc) of human and Escherichia coli (E. coli) origin were expressed and purified from E. coli with optimized protocols. The four multienzyme complexes were each reconstituted under optimal conditions at different stoichiometric ratios. Binding stoichiometries for the highest catalytic efficiency were determined from the rate of NADH generation by the complexes at physiological pH. Since some of these complexes were shown to possess ‘moonlighting’ activities under pathological conditions often accompanied by acidosis, activities were also determined at pH 6.3. As reactive oxygen species (ROS) generation by the E3 component of hOGDHc is a pathologically relevant feature, superoxide generation by the complexes with optimal stoichiometry was measured by the acetylated cytochrome c reduction method in both the forward and the reverse catalytic directions. Various known affectors of physiological activity and ROS production, including Ca(2+), ADP, lipoylation status or pH, were investigated. The human complexes were also reconstituted with the most prevalent human pathological mutant of the E3 component, G194C and characterized; isolated human E3 with the G194C substitution was previously reported to have an enhanced ROS generating capacity. It is demonstrated that: i. PDHc, similarly to OGDHc, is able to generate ROS and this feature is displayed by both the E. coli and human complexes, ii. Reconstituted hPDHc generates ROS at a significantly higher rate as compared to hOGDHc in both the forward and the reverse reactions when ROS generation is calculated for unit mass of their common E3 component, iii. The E1 component or E1-E2 subcomplex generates significant amount of ROS only in hOGDHc; iv. Incorporation of the G194C variant of hE3, the result of a disease-causing mutation, into reconstituted hOGDHc and hPDHc indeed leads to a decreased activity of both complexes and higher ROS generation by only hOGDHc and only in its reverse reaction
    • 

    corecore